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1. The Language L, .

Let L, be a language for the propositional calculus defined as follows:

Primitive symbols: )y |

PI’PZ’ P,,...(propositional variables)
Rules of Formation: Al'is a wff iff A, is a propositional variable,
or A, and A; are wffs and A is rlAé‘ or r'(AZ.A:,,T‘

Abbreviations (Definitions): DI. ‘FKAID A24“ for JZ(A'.—A2T1

D2. = "(Al v ALY for r—(~A‘.-A27’ .

2

r =
D3. (AI_AZT" for '[(A'D Az).(A2

It is tfo be assumed that the primitive and defined constants may be given

TDAI)]1

the usual truth-functional interpretations.

2. Synonymity.

The following metalogical definition of 'Syn' Is intended to provide
a plausible partial formal correlate of the intuitive notion of being
synonymous with, or meaning the same as:

*Dl. 'A, SYN A_' for Mhere is some sequence, A A ..., A LA T

- - . .
such that for each Ai’ Ai+l’ , A is just like Ai+l

except that some wff AJ in Ai is replaced'in

l-\i+I by Ak’ and elther

(i) AJ,A are definiens and definiendum, or

k
vice versa, by DI to D3, or
(i) A, is B and A is T_ B or vice versa'(Qﬁ), or
(iii) A is Band A_is T(B.B)YY or vice versa (lﬂéﬁ)’ or
Giv) A is T(B.CT and A, is (C.BYY (Comm), o
() A is TB.C.O T and A is Tc.8.0) (Assoc), or
(vi) A; is [B.-(C.D)T' and A, is f[-(B.~C).-(B.-D) !

or vice versa (Distr.) .!
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Speaking more loosely, synonymity of propositional schemata is preserved by

substitut ions based only on interchange of definiens and definiendum,
or principles of double negation, idempotence, commutation, association,

and distribution,

The following theorems establish various properties of SYN, and some of its

relationsto logical equivalence:

Theorem . |If A| SYN A then A, Egq Aq;

!

Proof: By 'A| Eq An' ("A; is logically equivatent to An") we

mean that fYAlfAnf’ is a tautology, or a logical truth.
Inspection of each of the rules (i) to (vi) shows that the
pairs AJ’Ak in each rufe are such that 1'(AJ.EAk)"' will

be a tautology. Since each Ai’ A differ only in the

i+l
replacement of a component by a logically equivalent

expression, it follows by the substitutivity of equi-
valents and the transitivity of logical equivalence in
standard logic that AI will always be logically equi-

valent to An, if A, SYN An.

I
We have ignored,here, "logical equivalence' of alphabetic variants; as we ignored
the synonymity of alphabetic variants in *DI. Relations between alphabetic
variants could be included in both places, but at the expense of simplicity.

We have chosen to ignore alphabetic variants, on the ground that they reflect
merely notational conveniences; it is perfectly possible to set up a satisfactory
logical language such that wffs must all have a certain alphabetic order and all
alphabetic "variants" from this are not wffs. Though awkward transformations must
be introduced, this shows the dispensability of alphabetic variants in the

present discussion.

We will see below that The converse of Theorem | does not hold on at
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least three different independent grounds. There are a great many important

[ -
classes of cases where Ai is Eg 1o AZ‘ but not AI SYN AZ'

According to Theorem 2

"(poup)'tand '(qoq)' are logically equivalent but not synonymous.A ~cording to

Theorem 3 '(p.-p.q)' and '(p.-q.q)' are logically equivalent but not synonymous,

and according to Theorem 8, '(pzq)' and '(p.q) V (-p.-q)' are logically equiva-

lent but not synonymous.

Theorem 2.

If A, SYN An then An contains all and only the same variables as Al'

Proof: lInspection of each of the rules (i) through (vi) shows

that in each step Ai’ Ai+l’ the substituent and the sub-
stituens have the same components - only logical constants are
changed. While logical groupings and constants may change,

no non-logical primitive, no variable, can be added or

entirely eliminated.

The converse of this, of course, does not hold; merely having the same variables

is no guarantee of logical equivalence, much less of SYN,

Theorgm.}.

If A, SYN An then every variable, Vi in AI occurs in the scope

|
of an odd (even) number of negation signs (after reduction to

primitive notation) if and only if V| occurs in the scope of an

odd (even) number of negation signs in An (after reduction to

primitive notation).

Proof: Inspection of Rules (ii) through (vi) shows that there
is no change under (iii), (iv), or (v) in the number
of negation signs within the scope of which any component
will fatl., 1In (ii) the changes always increase or decrease
this number by two, thus preserve the oddness (evenness)
of the number for any component, including variables. In

(vi) the components B,C,D, will occur under an odd (eveq)
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number of negations signs in the substituent iff They occur
under an odd (even) number of negations signs in the substi-

tuens.

Again, the converse of this, of course, does not hold; e.g., '(p.-gq)' and

'-(q.-p)! satisfy the consequent of Theorem 3, but are not logically equivalent

and thus, by Theorem | and modus tollens, not SYN.

Theorem 4,

SYN is reflexive, symefrical, transitive.

Proof:

Atways A, SYN A . For A, SYN "(Al.Al)"' by *DI, (1ii) and

again r'(AI.AI)"SYN A, by *DI, (ii1) - +the 'vice versa'

clause. Hence we get the sequence rhl,(A'.Al),A{’ and thus,

by *Di A|SYN A'. Thus SYN is reflexive,

lSYN A2 then AZSYN AI' For each of rules (i),

(ii), (iii) and (vi) have a 'vice versa' clause,and rules

Always if A

(iv) and (v) don't need them since for any B, C, putting

C for B and B for C will give the same resulft. ’Hence, since
every step is symefrical,-any sequence of steps 'TAl,...,Anf"
it put in reverse order, 'TAn, An‘|,...,A|Y‘ will satisfy

*DI. Hence if A SYN An then AnSYN A

| i.e., SYN is

I ’

symetrical,
Transitivity of SYN follows from *DI. Any sequence ~ .

"(A,,A,,A;T7 which satisfies the conditions stated for

A SYN Az, must also be such that the sequence "(Al,Az)’"

satisfies the conditions for AlSYN A2

satisfies the condition for AstN AS:— ConGérser, if for

1 wi
AB’ the sequences (AI’AZ) and (AZ,A3Y‘

o
and "(AZ,A3> =

-

some Al’AZ’

satisfy the conditions for A SYN A2 and AZSYN A3 respec-

tively, then we can form the sequence r?A',AZ,Asf’ in

the assurance that it will satisfy the conditions for




A‘SYN AS' This argument can be extended for any

AI’An’An+m (n and m being finite.)

Let all abbreviations, be removed from some wff A, and for each variable vy
let all these occurrences of v in A which lie in the scope of an odd number
of denial signs be under!lined. Now leT us treat underlined occurrences of each
v, @s occurrences of some new variable not occurring elsewhere in A, Let us
call the underlined variables 'negative variables',the non-under!ined
variables 'positive variables', and the set of all negative variables plus the
set of positive variables, the set of 'PN-variables'. Truth=tables which
make assignments to PN-variables as if they were all distinct variables

in the standard sense will be called 'PN-truth-tables'. Then,

TheBrem 5. A‘SYN An if and only if Al and An have exactly The same

set of m PN-variables.[ksm:2k, where k =(;ro. of variables)].

Proof: By Theorem 3 and the meaning of 'PN-variables' as given
above. If k is the numbsr of variables and m the number
of PN-variables, ksm<2k since there can be, at most, k
variables which occur both in the scope of odd number
and in the scope of an even number of denial signs, and
each variable can occur at most in two ways - under the
scope of an odd, or an even, number of denial signs.

Theorem 6. |f each PN-variable in A is assigned truth-values as if it were

a distinct variable, then the PN-truth-~table of A will be the

same as the truth-~table of A', where A' is the result of re-

placing in turn each underiined PN-variable in A by a variable

not previously occurring in A.

Proof: By nature of fruth-tables.
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I f AI' and An' arc just like A, and An, respectivaly, except

that each underlined variable in AI and An Is replaced, in turn,

at all Its occurences, by a variable not occurring previously, then,

if A,SYN A +then A, '"SYN A '.
| n ] n

Proof: Let A,...,A | A, be any sequence of wffs satisfying
the definicns of *DI (definition of SYN).

Then,by definition, A!SYN An' Now let A ' be like A|

except as described in the hypothesis. For each step,

ﬁki,Ai in tha sequcnce 'A',...,An;" there will now be

-
+1
a corresponding step rAi',Ai+";‘ in which the underl!ined

variable occurences in Ai and A, are replaced by the

i+

same new variables which replace them in A!'. Every

step goes through as before, by one of the rules (i)
through(ii), none of the now variables being eliminated
along the way, (by theorem 2), or occurring in the scope

of an even number of denial signs in any sfep{(by theorem 3),
so that the terminal step, énding with An' contains exactly

the same substitutions for An as A, ' contained for A', and

because the sequence TA|',...,Anr’ satisfies the definic.ns
of *DI, with exactly the same justifications at each step

as ﬁﬁi,‘..,Aé", A ' SYN An'.
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Theorem 8. |f AISYN An than the PN-fruth-table of TIAIEAnT' is tautologous.

Proof: By Theorem 6, the NP-truth-table for "(Alhzl\ni"r s equivalent
to the standard truth-table for‘r(A‘ '= A_')7 (Defining A"

and An' in relation to AI’An’ as defined in Theorem 7).

But also, by Theorem 7, if A, SYN An then A ' SYN An'.

! |
Now suppose 'TA"E.AH'YW is not tautologcus; then, by
Theorem | and modus tollens, A" Is not SYN with An'. But
in that case, by Theorem 7, and modus tollens, A' is not

SYN with Ay But this contradicts the hypothesis,A SYN A,

i
Hence, 'TA"E An‘f* must be tautologous, and Theorem 8 holds.
The converse of Theorem 8 does not hold; e.g.,the PN~truth-table of
"(p z (p.(pV-p))!' is tautologous, but, by Theorem 3, 'p' is not SYN with '(p.(pV-p))'-

though they are logically equivalent. Note also, the analogue of Theorem 8 for

logical equivalence does not hold: '((p.q)V(~p.-q)) is logically equivalent to

'"((pDq).{gDp))' but the PN-truth-table of '"((p.q)V(-p.-q)) = ((p >q).(gqD>p))!
L

is not tautologous. (Put 'r' for negative occurrences of 'p' and 's' for nega-

tive occurrences of 'q'; then assign p=F, q=F, r=T,s=T).

3. Normal Forms for Synonyms (MFS's).

Now we wish to define a certain kind of normal form, which we will call a
normal form for syrnonyms and abbreviate as 'NFS'. We also wish o
., prove (Theorem 9) that every wff is synonymous with some NFS, and define
the relation, ! "an NFS of y is x" or "x is an NFS of y".
Following this we shall prove that for every wff there is only gne 1175 which
is synonymous with it; i.e., for every wff there is a unique normal form for i3

synonyms.

YN o g (e o)Ay Ty (ppe) A
Wpeg) Vi-ries) = 4" o (G gV C-p--g)' = A
(o lr-q) ~(s.-pW A" o Cy2g).Lysp)) > &




We define 'B. is an NFS' as follows . -

*D2, 'B‘ is an NFS' for 'B' has the form T(C'.(C

(i) each C

2.(...(Cn)))f‘ and

i is either an elementary wff, Ej’ (i.e., a variable or
a negated variable), or a disjunc+ion, Dj,of elementary wffs of the

form r7-([-Z|.(E .(...(Em)))f‘;

2
(i1 if Ci does not contain some PN-variable, Vi which occurs else-
where in B', then there is a DJ in Bl which contains all the PN~

variables In Ci plus e

(iii) The components of B, are arranged according to a univocel

|
alphabetic ordering, without repefiTions,rK..(A’.(Al...))..f’.

The effect of condition (ii) is that the normal forms for synonyms of A| are
such that if they contain any Ist feval conjunct Ci (i.e., a conjunct which does
not lie in the ‘scope of a negation outside itself) which contains a set, S, of
PN~variables, then every larger disjunction of elementary wffs which contains the
same set S, plus one or more other PN-variables appearing in Al’ will also be a
first-order conjunct of any NFS of A'. For example, if Al contains p,p,q only,

and A SYN *(-p.~-(-p.-g))', then the latter expression Is not in normal form, by

!
condition (i), although it is by condition (i). To satisfy condition (ii),
"(-p.-(-p.-q)) ' must be expanded to '(-p.(~(-p.p).{~(-g.p).(~(-p.q)-(-p.(p.~q))))))’,
the three new disjunctions added being those which contain only PN-variables of

the initial wff, but also all PN-variables which occur in smaller conjuncts

found in the original wff,

We next prove:

Theorem 9. For every wff Al’ there is some wff BI such that A'SYN B| and

Bi is an NFS.




-9.

Proof: Given any A', it is easily seen that condition (i) can
be satisfied; for it is well known that we can reduce any

wff A, to conjunctive normal form in the sense of

|
Hilbert and Ackermann, Ch.l, $3, using only double
negation, idempotence, commutativity, association and
distribution and DeMorgan's theorems. Rules (1i) through
(vi) in *D| are equivalent to the first five principles,
and by the definitions Di~D3 and double negation
DeMorgan's laws follow; association and commutation will
put the result in the required groupings.

To show that condition (ii) can always be satisfied for

any A let us suppose that condition (i) has been met,

‘,

so that A' SYN A2, where Az satisfles condition (i),

1.e., has the form r'(C'.(C ...(Ci.(...(Cn))))T‘. But

2
suppose Ci lacks some PN-variable, Vi which occurs
elsewhere in A2' | v, occurs elsewhere, it must occur
in some conjunct Cj‘ By association and commutation it
is possible to get an A;, Ag SYN A,, such that 'TC|.ij7
is a conjunct. Now Cj is either an elementary formula

E‘ whose variabile is Vi» Or it is a disjunction of

elementary wffs, one of whichAEl, contains vi-
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Case:l Ay =(...((C,.E})...))

(1) L. UCED..))

(2) (al=(=(Cp=(-E D). 0u)) (13,*01 (i 1)DN(twice)
(3) Covul=(=(C, = (=€, =€ )N )) (2),*DI(i11) 1dem.
(4)  (oof=(=(C == | ).=(C;.==E D)) D) (3),*D1(vi)Dist.

(5) (.ol=(=(C[.E).=(C,.E I ) (4),%D1 (i 1)DN(twice)
(6)  (.u{=(=(C{.E).=C).=(=(C}.E ). ~E;))...0) (5),%D1 (vi)Dist.

(7 (...(-(-C‘.~(C .E’)).-(-E'.-(C .Eli))...)) (6),*D1 (iv)Comm, (fwice)

] i

8) (...((~(-C,.-C ).-(-Ci.-E‘)).(-(-E NN

i f .-C;).—GEl.-E

(7),*DI(viIDist. (twice)
(9) (...(((—(-Cl).-(-Ci.-El)).(-(-El.-Ci).—(-E|)))...))
(8),*01(ii1)Idem(twice)

(10) (...((Ci.-(-C .-El)).(-(-E ~C).E D). (9),*DI(11)DN(twice)

i A R

(i ("'((Ci'(El'-(-Cl'-E!)))"')) (10),*Di(iv),(v) and (IiD)

Assoc, Comm & ldem.

I f vy is negative, the Ei is initially a denied variable, and the '—EI' in
“-;’:"_V;n
(1) will give way, by DN, to an vys otherwise Ellls. if Ci is an etementary wff,

then either some v,=C., or C, is '—v{’, in which case '10;’ in (11) is replaced

through double negation by ”V{‘. If CI is a d!sjuncfion,'L(Ez.E3....Emfi,

then by double negation, '1<uC‘.~ElY’ becomes simply '¥((E2.E3....Em).—E'Y’,

i.e., another disjunction of elementary wffs. The proper NFS c¢rouping can
then be restored by Association and Commutation (*DI, (iv) and (v)0. Thus

in case |, condition (ii) for NFS is satisfied.
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Case 2. A3 2("’((Ci‘0j)"‘)) where Dj is a disjunction of eiuvmentary wifs
including one, E‘, where the variable in E' does not occur in C:,
Now we suppose that by association and commutation inside Dj’ we

can get a DJ', such that DJ' SYN Dj’ and DJ'= —(E|.A4). Thus,

() ("'((Ci'D‘)"'))

J
(2) (...((Ci.~(E'.A4))...) (1), and Hyp. atone
(3) (...(—(7(Ci.-(E§.A4))...) (2), XD LT DN
(4) (...(-(~(Ci.-E').-(CI.—A4))...)) {3),%0: v it
(5) (...((—(-(C‘.-Ei).~Ci).-(—(Ci.—El).-—A4))...)) (4, 5Dt
(6) (...((-(*C;.-(Ci.-El)).—(A4.-(Ci.—E')))...)) (23,7010,

(7 (...((-(-Ci.-Ci).-(Ci.--E|?).(-(A4.-Ci).m(A4.~~Ei?3:,..\)
(63,50t (i st

(8) (...(C

~~

i.(—(El.A4).(—(E’.-Ci).(-(A4.-Ci)....))))) (73,50,

After removing double negations, in case C' is a nocuved wit, 2@ cmiur Lo U

"-C,7, we have condition (i1) of *D2 satisficd w!™h resnact +5 Lo 2 o G
‘ 3

v'l
By similar procedures condition (ii) in *D2 may be catisiic’ for ~vuis

PN-variable, so that if a PN-variable occurs in aay conjunst ti on DL,y

Dj which contains all the PN-variables in Ei or Di but no veriuble not oars 0T
in A', will occur as a conjunct of BI'
The satisfiability of condition (iii) in *D2, is left "o the readsr. C..oun

a univocal alphabetical ordering, commutation and association (¥20{7w) gay “hri,y

are sufficient to satisfy it; and when it is satisfied, repctitions Ti..(Ainfft
can be removed by association (¥DI(v)0, commutation (*Di(iv)) and !denpoiznce

(*DICT1D)).
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We now define 'BI is an NFS of A,', or 'NFS(A|,BI)' as follows:

¥D3 'NFS(AI,B')' for 'A! is a wff and BI is an NFS and AISYN Bl'

And we wish to prove that for each AI There is at most one B’,NFS(Al,Bl).

For this we prove first the following theorem.

Theorem 10. For any B! and 82, if Bl is an NFS and 82 is an NFS and BlSYN BZ’

then B’ = BZ'

Proof: Hypothesis 1I: B‘ is an NFS

Hypothesis 2: B2 is an NFS

Hypothesis 3: Bl SYN 82

We show first that the class of components in B! has exactly
the same members as the class of components in 82; then the
identity of the two can easily be established since the
definition of NFS requires that these components be in

one and only order and that repetitions be eliminated.

We need only prove, then, that they must contain the same
components.

By hypothesis 3, BISYN 82. Hence, by Theorem 2,

B‘ and 82 contain all and only the same propositional
variables, and by Theorem 5 all and only the same PN-

variables. Further, by *D2,(ii) B, and B2 each contain

I
a conjunct CO which is a disjunction of the set of all its

¢

PN-variables since if any disjunction,D;, lacks a PN«

variable which occurs elsewhere in Bl' then B' contains

another disjunction, DJ’ which contains all the PN~
variables of Di’ plus the one it misses; hence some CO

must contain all PN-variables of Bl' Now suppose that

there is some conjunct Ci which is in B| but not in BZ'
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Since B, and B

[ 5 are both NFS wffs, by *D2 (ii), B, will

|
contain all disjunctionswhich contain all elementary
wffs contained in Ci and one or more of the others in Co;

but also, B,, which does not contain Ci’ will not contain

20
any disjunct which contains a sub-set of the elementary
wffs In Ci and no more. Since Bl and 82,(being NFS-wffs)
are conjunctions of denials of elementary wffs, and by the
nature of truth-tables, the PN-truth-table for BI will

be F and the PN-truth-table of 82 will be T if each
positive variable in Ci is F and each negative variable in
Ci is T, while all other variables are T if positive and

F if negative. But then, the PN-truth-table of "(Blsaz)'1
is not tautoclogous; thus, by Theorem 8, Blis not SYN

with 82. But this contradicts hypothesis 3. Hence, there
can not be some conjunct in B‘ which is not in BZ; or by
similar reasoning, vice versa. Hence B‘ and 82 have all
the same conjuncts.

Since to be NFS wffs they must be in the same order and
free of repetitions; and since they have all the same
components, they are identical.

Hence if (1),(2) and (3) then B, = BZ' Q.E.D.
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Our uniqueness theorem for normal forms for synonyms now follows:

Theorem |1. For every wff Al’ there is one and only wff, B', such that

B‘ is the NFS of AI’

Proof: For every wff A', there is at least one wff Bl’ which

is a NFS of A, (Theorem 9). |f thcore is some 82 such

that B2 is an NFS of AI’ +hen A‘SYN B2

by ¥D2. But then by the transitivity of SYN (Theorem 3),

and B|SYN A|,

B‘ SYN BZ' By hypothesis, BI is an NFS and 82 is an NFS.

But then, by Theorem 10, B =82. Hence,

|

YINFS(A ,B )T“B'=BZ))

(A i B2

)fwBl)(NFS(AI,Bl).(B

I 2

4. Comments:
is a
I. The relation"...is the NFS of..%fMany-One relation, i.e., a function.

2. Hilbert and Ackermann present two sorts of normal forms. The first sort
had two variaties, duals of each other, the conjunctive normal form and the dis-
junctive normal form. Hilbert and Ackermann asserted that these normal forms do
not provide a unique normal form for each wff. The assertion was based on the
assumption that meaning is extensional, or fruth-functional, and thus that two ex-
pressions "have the same meaning'" iff they are the same +ruth-functions, i.e., are
logically equivalent. The example fThey gave, to show non-uniqueness, was'(psq)'.
They defined '(pzq)' as standing for "the sentence which is frue iff p and q are
both true or both false", i.e., for '((p.q)V(~p.-q))'; therefore, they said,
'(p3q)' 'means, therefore, that p and q have the same truth-value'. But fhe con-
junctive normal form of'((p.q)V(-p.-q))'" furns out tfo be' ((pV-p).({(pV-ghl{{gV-p)Lq¥-g)';"
while the conjunctive normal form for '((-pVq).(-qVp))' which is also logically equi-
valent to '(pzqg)'(and hence in their terminology, has the same "meaning") is itself,
and these two normal forms can not be reduced to, or gotten from each other. If

the meaning of "sameness of meaning" is changed, as suggested in this paper, to
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mean just those wffs which can be gotten from each other by the kinds of fTransfor-
mation allowed in reduction to conjunctive normal forms (or dually, for disjunctive
normal forms) then, on this definition the fwo normal forms are not synonymous (do
not have the same meaning) ~- among other things one cortains the tautologies
'(-pVp)' and '(-qVg)' where the other does not. Along with the uniqueness of norma |
torms which follows by adopting this view of synonymity, comes a great variety of
distinctions among wffs which are completely passed over if sameness of meaning is
identified with logical equivalence. On the other hand, there is at hand a de-
cision procedure for distinguishing wffs which are tautologous, inconsistent or
neither without recourse to truth-tables or axiomatic systems; it is analogous tfo
the test by reduction to conjunctive normal forms. So we have not, in the process,
fost any distinctions of importance to logic.

A second sort of normal form, labeled by Hilbert and Ackermann "ausgezeichnete"
(or "distinguished") normal forms, permitted a unique normal form for each wif,
but with this drawback - there was no conjunctive normal form at all for tautologies
and no disjunctive normal form at all for inconsistencies. These are the same as
the "distributive normal forms" of Hintikka,so far they are found in the propositional
calculus. The NFS normal forms above have the advantage of (1) being unique for
every wff, tautologous, inconsistent, or neither, and (2) of being capable of
distinguishing effectively between a wide variety of different kinds of tautologies,
and inconsistencies, as well as a variety of different sorts of wffs, with The
same truth-function.

Finally, the function, NFS(AI,B') is an intensional function of functions, in

the precise sense of Principia Mathematica, Vol.l, pp. 72-3. And by the same token

SYN is an intensional relation and not an extensional relation, in the same sense.
For the following may be true: NFS(Al,Bl), AlSYN Bi’ and 'TBiEBZY" may be tautologous,

(making B| and 82 coextensive), yet NFS(Al,Bz) and A,SYN B, may both be false,

I 2
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as in the case just discussed [let AI be (p=q)', B' be the NFS of '"((p.q)V{(-p.-q’)'
and 82 be the NFS of '((-pVqg).(-gVp))']. But since our treaitment has been
rigorously syntactical, it can not be held that this view of "intensions"

suffers from the kinds of mentalism, vaguencss, or mystical opacity, which have

so often been objectionable in other "intensional' logics.
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